Acquired Brain Damage and Driving: A Review

A.H. van Zomeren, PhD

Department of Neuropsychology, University Hospital, 9713 EZ Groningen, The Netherlands

W.H. Brouwer, PhD

Department of Clinical Psychology, State University of Groningen, The Netherlands

J.M. Minderhoud, MD

Department of Neurology, University Hospital, 9713 EZ Groningen, The Netherlands

Five issues in evaluating driving ability after brain damage were addressed through a review of the literature. Some preliminary conclusions were reached: (1) about half of all subjects studied still hold a valid driver's license; (2) brain-damaged drivers could not, in general, be seen as risky drivers, although some individuals show decreased driving skill and risky behavior in traffic; and (3) statistics show no increase in traffic violations or accidents in groups of neurologists patients with acquired brain lesions or diseases. Frequently noted problems of brain-damaged drivers include poor judgment of traffic situations, impulsivity, and visuospatial impairments. Traditional psychological tests have insufficient predictive value regarding fitness to drive. It is suggested that new techniques be developed to enable more valid statements about the skills needed for safe traffic participation. These assessment techniques should emphasize the higher cognitive levels in driving, i.e., the tactical and strategic levels. At the moment, driver training programs in rehabilitation focus mainly on the operational level, with emphasis on handling the car, use of controls and mirrors, and technical adaptation of the vehicle.

KEY WORDS: Brain damage; Driver training; Driving; Traffic

Many people who experience some type of cerebral damage recover to an extent that makes them independent again in activities of daily living (ADL). In our highly motorized Western society, driving is almost regarded as another ADL. Patients who have recovered from a cerebrovascular accident (CVA) or severe head injury will, at some point during convalescence, ask their doctors or relatives whether they can resume driving. This simple question is hard to answer.

It has been generally assumed that brain damage can make a person unfit to participate in traffic. Driving a car requires a set of complex skills and abilities that may be impaired by cerebral lesions and diseases. In many countries a medical examination is required before a driver's license can be renewed after brain damage has been sustained. The Central Bureau Rijvaardigheidsbewijzen (CBR), the state office issuing driving licenses in the Netherlands, gives directives to physicians who judge driving fitness of individuals with physical and/or mental impairments. In the subgroup of patients who have survived a severe head injury, a candidate is unfit to drive if, to a considerable degree, the following symptoms are noted: (1) increased irritability, impulsiveness, and aggressiveness, (2) poor concentration, (3) increased fatigueability, (4) poor memory, and (5) personality changes resulting in antisocial behavior.

Since “considerable degree” is a vague measurement, the physician or neurologist often seeks a second opinion from a specialist in a related discipline, such as psychiatry or psychology. In fact, in most countries the problem of fitness to drive is examined by multidisciplinary teams, but even with the combined know-how of different professionals the decision often remains difficult. Which impairments result in deficient driving, and the relative importance of each impairment, are unknown.

METHOD

This review describes the available information about automobile driving by people with various kinds of acquired brain damage. It has been structured around the following five questions: (1) What proportion of patients with acquired cerebral damage continues or resumes driving a car? (2) Is this group of patients at high risk? (3) Is there a specific pattern of impairments that increases risk? (4) Can driving fitness be predicted from test performance? (5) Can driving skills be trained or retrained in this group?

DISCUSSION

Proportion of Licensed Drivers Among Subjects with Cerebral Damage

Seven investigators presented data on large groups of subjects with brain damage of various etiologies. The first of these concerned 309 World War II veterans whose socioeconomic rehabilitation was studied 15 years after injury. Nearly all subjects had sustained penetrating missile injuries. At the time of follow-up, 200 subjects were active, licensed drivers. Although no information about age of subjects is given, it is reasonable to assume that 15 years after combat, mean age must have been between 30 and 45 years. Bijkerk and associates studied the social outcome of 84 civilian subjects who had sustained moderate to very severe cerebral concussions by blunt head injury. They found that 66 (78%) of these patients were driving at the time of follow-up. When the sample was divided...

Arch Phys Med Rehabil Vol 68, October 1987
Brain-damaged Patients as a High-risk Group

Half the patients studied still had the formal right to drive. Do they present a greater risk, both to themselves and to other road users? No clear answer to this question is available. Statistical studies of the relationship between diseases and traffic accidents have used very broad categories. For example, in a category "nervous and mental diseases" one finds a heterogeneous company of psychopaths, people with spinal cord lesions, and Parkinson patients. Statistics about accidents and traffic violations in such a group tell little about the specific category that this review is concerned with — drivers with acquired cerebral damage.

The literature on handicap and driving does suggest one firm conclusion. Several large-scale studies make it clear that physical handicaps per se are not related to an increased accident or violation rate. Michon points out: "the policies of insurance companies who tend to consider handicaps of limbs and mobility as good risks." These policies have an empirical basis. McFarland and associates reported in 1968 that there was no evidence of an increased accident rate in orthopedically handicapped drivers, i.e. drivers with amputations. In addition, handicapped subjects were more strongly motivated to be good drivers than nonhandicapped. In 1973, the California Department of Motor Vehicles also failed to find an increased accident rate in men and women drivers with loss, or restricted use, of limbs. A Swiss study of 187 one-eyed drivers found that this group had fewer recorded accidents and violations than a control group, although the differences were not statistically significant. The data suggest that people with a serious physical handicap can compensate, in many cases, for their instrumental shortcomings.

Very few comparable studies of patients with cerebral damage have been published. In the Federal Republic of Germany all traffic accidents and observed violations are centrally recorded by the Kraftfahrzubrangsamt (the State Motor Vehicle Department) in Flensburg. Investigators from the University of Göttingen have studied the records of samples of neurologic patients with brain tumors and Parkinsonism. Wolpert and Ritter reported on 101 patients with brain tumors who had drivers' licenses. Although this group was underrepresented in the central register, registrations from the patients were more often connected with severe accidents. Only patients with tumors of the hypothalamus and with neurinoma, however, had a higher accident rate than the general population. This may indicate that even within a narrow neurologic category, general statements are unwarranted. Ritter described a group of 156 patients with Parkinsonism, and reported that these subjects were also recorded less frequently in the federal register. They assumed that this underrepresentation is in part due to members of their patient group who voluntarily refrained from driving.

Sivak and coworkers investigated driving skills in a group of 23 patients with brain damage, comparing them to patients with spinal cord damage and able-bodied subjects. Thirteen subjects experienced stroke, seven had traumatic head injury, and three had cerebral palsy. All subjects were tested with a set of driving tasks in a parking lot, and then in traffic over a...
fixed route through Ann Arbor, Michigan. The brain-damaged subjects performed significantly worse than the control group and the spinal cord patients on tracking tasks in the parking lot. Two were excluded from driving in traffic because it seemed too risky. Two other brain-damaged subjects were tested on the open road for only a few minutes because their driving was judged unsafe. Thus, 19 of the 23 subjects with brain damage finished the driving test. Four of the 23 brain-damaged patients were excluded from actual driving in an early stage, while the remainder of the group performed worse than control groups on a composite index comprising speed adaptation, observation of traffic scenes at junctions, etc. This group of mixed neurologic etiology was, to some extent, a high-risk group in actual traffic.

There is another category of studies that suggests increased risk in brain-damaged drivers. In studies of patients with CVAs who underwent driver training at rehabilitation centers, a proportion of the trainees had to be excluded from actual driving because of poor planning and judgment, incautious behavior, etc. Both Bardach and Quigley noted that patients with CVA in the right hemisphere demonstrated poorer driving skills and were more difficult to train than patients with CVA in the left hemisphere.

In summary, statistical studies of accident and traffic violation rates reveal that people with cerebral damage should not, in general, be considered a high-risk group. An increased accident rate was observed only in subjects with neurinoma and tumors of the hypophysis. However, a detailed study of a small group—patients with CVA, cerebral palsy, and head injury—demonstrated poor driving skills, occasionally resulting in risky behavior. Furthermore, reports about driver training programs at rehabilitation institutes indicate that some trainees do not reach a level of safe driving. More specifically, patients with a cerebrovascular lesion in the right hemisphere often fail to pass the final test for relicensing.

Patterns of Errors

A few studies report on actual driving by subjects with acquired brain damage. Some of these are impressionistic, listing experiences with patients in clinical practice or in driver training programs at rehabilitation centers. Others are more systematic, using testing procedures and objective scoring methods for recording errors.

All findings will be discussed in terms of the Michon model of car driving. Michon describes driving as a task with three levels in a hierarchic structure (table 1). On the top level, planning is an important aspect. Decisions are made about choice of route, time of day (avoiding rush hours), breaks, etc. Such decisions are usually made before actual driving starts, and include evaluating the general risks of traffic, conditions of traffic density, climate, and so on. Even the decision to take the train in preference to the car is a strategic one. At the tactical level, behavior and decisions in traffic are made: adapting one’s speed when entering a residential district, switching on the headlights when rain reduces visibility, or deciding to pass another car. Finally, on the operational level, the common actions and decisions of driving are analyzed: perception of traffic situations, use of mirrors and controls, handling the car, and dealing with danger.

This three-level model is hierarchic in the sense that decisions on a higher level determine the working load on lower levels. For example, a tactical decision to pass requires a series of actions on the operational level. Another important feature is the increasing role of time pressure at descending levels. Time pressure is nearly zero at the strategic level, intermediate on the tactical level, but usually great on the operational level. To avoid dangerous situations, the actions on this level must be performed within a restricted time.

Strategic level. Information about impaired driving skills on the strategic level is scarce. To the best of our knowledge, no studies have been carried out on planning of trips or the selective use of cars by brain-damaged subjects, although several reports of driving behavior in people with acquired lesions indicate poor planning, poor judgment, and impulsivity. Unfortunately, it cannot be deduced from these papers whether impaired insight has an effect on the strategic or tactical level. Since most of the reports dealt with actual driving, it should be assumed that the quoted characteristics were observed mainly at the lower task levels. It seems likely, however, that poor planning, poor judgment, and impulsivity influence strategic decisions as well.

Tactical level. Several investigators noted serious impairments in the driving of brain-damaged subjects on the tactical level. Their observations were all made during actual driving in retraining programs. Although driving instructors used standard observation schemes, not all aspects were scored in a purely objective way. For example, “approaching crossings too fast” is not an unambiguous observation, since the judgment is subjective and related to factors like traffic density, visibility, and the driver’s visuomotor skills. The statements that were found in the literature are listed verbatim in table 2 to retain the original flavor for the reader.

Table 1: The Hierarchical Model of Task Performance in Car Driving, as Presented by Michon (1979)

<table>
<thead>
<tr>
<th>Level of task performance</th>
<th>Level of risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strategic</td>
<td>Accepting risk</td>
</tr>
<tr>
<td>Tactical</td>
<td>Taking risk</td>
</tr>
<tr>
<td>Operational</td>
<td>Dealing with acute danger</td>
</tr>
</tbody>
</table>

Table 2: Impairments on the Tactical Level

<table>
<thead>
<tr>
<th>Source</th>
<th>Impairments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bardach, 1971</td>
<td>Distraction leading either to panic</td>
</tr>
<tr>
<td></td>
<td>Reactions or marked impulsiveness</td>
</tr>
<tr>
<td></td>
<td>In left hemispheres:</td>
</tr>
<tr>
<td></td>
<td>Poor planning</td>
</tr>
<tr>
<td></td>
<td>Inability to shift according to</td>
</tr>
<tr>
<td></td>
<td>Changing demands</td>
</tr>
<tr>
<td></td>
<td>Poor judgment</td>
</tr>
<tr>
<td></td>
<td>Reduced awareness of traffic conditions</td>
</tr>
<tr>
<td>Shore and coworkers, 1980</td>
<td>General reduction in cognitive control</td>
</tr>
<tr>
<td></td>
<td>manifested as</td>
</tr>
<tr>
<td></td>
<td>disinhibition</td>
</tr>
<tr>
<td></td>
<td>distractibility</td>
</tr>
<tr>
<td></td>
<td>impulsivity</td>
</tr>
<tr>
<td></td>
<td>stimulus binding</td>
</tr>
<tr>
<td></td>
<td>Rigidity</td>
</tr>
<tr>
<td>Quigley and Delisa, 1983</td>
<td>Poor judgment</td>
</tr>
<tr>
<td></td>
<td>Inability to perceive hazards</td>
</tr>
<tr>
<td></td>
<td>Incautious behavior</td>
</tr>
<tr>
<td>Hopewell, 1985</td>
<td>Errors of judgment</td>
</tr>
<tr>
<td></td>
<td>Impulsivity</td>
</tr>
</tbody>
</table>

Arch Phys Med Rehabil Vol 8, October 1987
Impulsivity and poor judgment are cited most frequently by investigators. Impulsivity is attributed to disinhibition or reduced cognitive control. Poor judgment is not defined in these studies, but it may be assumed that this characteristic is derived from poor estimation of risks and inadequate adaptation of speed to traffic conditions.

Operational level. The next question is whether brain-damaged drivers show impairments in basic driving skills such as controlling the vehicle, steering, perceiving, and taking action. A review of the literature indicates that investigators show little concern about motor deficits like hemiparesis. Obviously, this is due to the fact that technical adaptations of the vehicle, such as a steering wheel spinner knob or left-sided accelerator, can compensate for these motor weaknesses. Table 3 presents statements from the literature that seem to apply to driving at the operational level. For some quotations, it has been difficult to decide whether they were concerned with the tactical or the operational level, as the observations were phrased in general terms. Thus, there may exist some overlap between tables 2 and 3.

Although investigators describe a variety of impairments at the operational level, most fit into five general categories: inadequate visual scanning of traffic and environment, problems in spatial perception and orientation, poor tracking, slowness in acting, and confusion when more complex actions have to be carried out. Personal communication with the staff of a Dutch rehabilitation center added two relevant observations. In their training program, these investigators noted poor tracking, as did many others. In addition, they noted problems resulting from poor coordination in the lower limbs. Their patients had difficulty in the subtle control of brake and accelerator. They were braking too brusquely and were unable to drive very slowly, as required in traffic jams. Finally, the driving instructor noted that some trainees were able to judge traffic adequately when riding a bicycle, but not when driving a car. In his view, "pictures are coming too fast" while driving.

Two studies seem to belong to a new generation of investigations. Both Sivak’s group and Stokx and Gaillard studied small groups of brain-damaged subjects in an experimental design, and both reports stem from nonclinical research institutes. Both studies attempt to relate actual driving skills to psychometric or experimental test performance. The Sivak report was based on driving in traffic and closed-course driving, whereas Stokx considered closed-course driving only. Both investigators tested the ability to drive a straight course and a slalom, or 8-shaped course between lines of cones. They found that subjects needed significantly more time to finish the tracks, and knocked over more cones, than the controls. Stokx reported that his patient group took 17.8 seconds for the slalom, while the control group needed only 50 seconds. Shifting gears from a full stop up to the fourth gear took 20.9 seconds in the subject group, and 15.5 seconds in the control group, but the number of errors in shifting gears was almost equal in the two groups (1.7 and 1.8, respectively).

Side of lesion. Left hemiplegics are judged less favorably as drivers in several studies. Obviously, a lesion in the right hemisphere may result in deficits in skills that are crucial for driving, such as adequate visual scanning of the environment and adequate use of space. A particular problem is caused by the phenomenon of unilateral neglect, which is usually manifest on the left side of the patient’s field of vision.

To summarize briefly, no information is available about typical impairments of brain-damaged drivers at the strategic level. At the tactical level, poor judgment and impulsivity seem to be major sources of risk. On the operational level, a variety of deficits can be noted, but pure motor problems play a minor role. The greatest problem on this level seems to be in the visuospatial sphere, and in an inability to deal with complex situations that require rapid sequencing of responses. Finally, there is a strong suggestion that lesions in the right hemisphere are a greater threat to driving skills than left-sided lesions.

Predicting Fitness

It would seem reasonable to assume that fitness to drive can be predicted, to some extent, from clinical characteristics of a brain-damaged patient, and the medicolegal evaluation procedures quoted earlier are based on that assumption. Variables that might have some predictive value include severity of disease or injury, duration of illness, rate of progression in diseases like Alzheimer or Parkinson disease, age of the patient, and previous driving experience.

There is an impressive list of tests for the assessment of
psychologic deficits in people with acquired brain damage.15 Although this arsenal may have something to offer in assessing driving skills in brain-damaged subjects, little research has been done on the validity of neuropsychologic tests with regard to driving. Some tests would seem to have "face validity," like a test of visual reaction time (RT) or visual search. Unfortunately, such face validity does not always hold at closer inspection: at least in the healthy population, RT is not at all related to driver quality.21 The efficient driver is not the one who reacts quickly, but the one who avoids situations in which only his fast reaction can save him from disaster. In this context, Hopewell10 notes that drivers between the ages of 15 and 20 years, or those drivers who are at the peak of their psychomotor coordination, have the highest risk of accidents.18 Similarly, elderly drivers are safe drivers, generally speaking, despite their increased RTs.4

Another methodologic problem is the external criterion for the concept of fitness to drive. How can we verify predictions about patients? An obvious criterion would be the number of accidents or traffic violations in, say, the first five years after relicensing or during the first 50,000 kilometers of driving. However, this index would be hard to come by, and then only a crude measure of someone's fitness to drive.

One might consider expert judgment of a patient's driving in real traffic: Clearly, this is an imperfect criterion, since subjects may drive cautiously in the company of a judge, and recklessly when alone. It is well known that the driver's examination used in most European countries gives no guarantee that one will drive safely ever after. On the other hand, this paper is concerned with the clinician's problem of judging fitness to drive: professionals in rehabilitation must decide whether a trainee is able to drive, but cannot be asked to guarantee that he will always use his abilities in an optimal way.4

One might also think of an external criterion as the opinion of a multidisciplinary team, including a driving instructor or examiner. However, even the combined know-how of several professionals does not guarantee predictive validity. For instance, they may tend to focus on the same technical and somatic problems of the applicant, or they may share the same prejudices about elderly drivers.

With these methodologic problems in mind, the available evidence on prediction of fitness to drive is presented. The literature on both clinical variables and psychologic tests is limited. Moreover, we have already seen that basic descriptive data on age of patients and duration of illness are often lacking in these reports.

Clinical variables. Golper and associates7 studied a group of 20 aphasic adults, evaluating the ability of these patients to decide on their own fitness to drive. The sample consisted of 10 patients who had resumed driving and 10 patients who had decided not to drive. A comparison was then made of a rehabilitation team's assessment of driving skills and the patient's own judgments. The team based its decision on a variety of clinical ratings and tests, among them visual acuity and simple visual RT. A highly significant agreement was found ($p<.005$) between professional and patient judgment, suggesting that the aphasic subjects had appropriately judged their own competence to drive. In fact, four of the nondrivers were judged by the rehabilitation team as fit to drive, indicating that patients tended to be cautious in their decisions. All patients who had judged themselves fit to drive were also considered fit to drive by the professional team.

The degree of overall communicative impairment of these 20 subjects had been assessed with the Porch Index of Communicative Ability (PICA). There was no significant difference between drivers and nondrivers in overall severity of communication impairment demonstrated by the Mann-Whitney U-test. This suggests that degree of aphasia has no predictive value for fitness to drive. Neither age of the patient (ranging from 44 to 75 years) nor duration of illness had a relation to their fitness classification.

Discriminant analysis of variables tested by the team indicated that impairments in spatial relationships, motor function, sequencing, and peripheral vision, had the greatest weight in professional judgment. Reaction time contributed very little. Spatial relationships and motor functions also appeared as discriminating in the analysis of patient judgments, but aphasic subjects considered verbal expression and auditory comprehension as well. Subjects were more concerned about linguistic impairments than was the team—unjustly, as the PICA scores for the subgroups revealed. The outcome of this study is an agreement with the experience of Bardach,1 who noted that verbal impairments of right hemispheric individuals are not central to the task of driving.

In head-injured subjects, severity of injury might predict fitness to drive. In current research on head injury, duration of PTA is generally considered the best single index of severity. This index was recommended in 1961 by Russell, and propagated by the Glasgow group of head injury investigators.5 Posttraumatic amnesia is defined as the interval from the moment of impact until the return of orientation and memory of daily events. For severe and very severe head injuries, duration of PTA is best expressed in number of days. Bijkerk2 found fewer denied drivers among patients whose PTA exceeded one week.

Hopewell10 described a group of 56 severely head-injured subjects at a rehabilitation center who were candidates for a driver training program. Mean duration of PTA had been 68 days in this group. Six months after discharge from the center, 27 subjects were engaged in licensed driving. There was a significant difference in mean duration of PTA for drivers and nondrivers. In the first group, mean duration of PTA was 37 days, and in the latter group, 95 days (student t-test $p<.05$). These data suggest that even within a population of severely injured patients, duration of PTA has some predictive value.

Finally, as a broad and vague category of clinical variables, frontal symptoms are sometimes mentioned in relation to fitness to drive. In patients with severe head injury, lack of self-criticism is often observed and interpreted as a sign of damage to the frontal lobes, with negative implications for safe driving.14 The literature indicates that poor judgment and impulsivity are often noted in brain-damaged drivers, and these characteristics suggest that the functions of the prefrontal lobes play an important role in driving.

Psychologic tests. Intelligence tests have been mentioned as predictors of fitness to drive. Maag16 stated that an IQ below 70 makes a candidate unfit to drive. The usefulness of this statement is questionable, because it does not differentiate between feeble-minded persons and individuals of originally
normal intelligence who have sustained extensive cerebral damage. Hopewell found an average full-scale WAIS-IQ of 94.4 in the driving group, and 78.5 in the nondriving group. In fact, only one person with an IQ below 80 was able to achieve motor vehicle operation. This man had previously been a chauffeur. Although the difference between groups was highly significant (student t-test p<.001), the practical value of IQ as a predictor remains to be proven. For one thing, test scores on the performance part of the WAIS will often be lowered by the slowness that is characteristic of most brain-damaged patients. In addition, full-scale IQ may be reduced by an effect of focal damage unrelated to driving skills. Aphasics, for example, may perform poorly on the verbal part of the WAIS, but their aphasic impairments do not negatively affect their driving. Since IQ tests usually investigate a wide range of cognitive abilities and visuomotor speed, the final IQ is merely a crude index of overall severity of brain damage. Further, IQ varies widely in a healthy population, with no apparent relation to driving skill, as judged by rate of accidents or traffic violations. IQ may be important only when it lies at the lower limit of the normal range. An IQ below 80 may have consequences for insight on the strategic and tactical levels of driving.

Predictive validity has been claimed for tests of visual RT and perception of complex patterns. Visual RT contributed to some extent in the discriminant analysis by Golper when the investigators classified aphasic patients as fit or unfit to drive. Shore noted slowed RT secondary to attentional impairment in patients who failed to achieve relicensing. In two investigations, RT has been directly related to actual driving. Sivak recorded two-choice RT in his group of 23 brain-damaged subjects, finding large differences in comparison to subjects with spinal cord damage and healthy controls. However, choice RT was not included in the psychologic test scores that yielded useful correlations (.45) with the composite driving index based on a ride through town traffic. On the other hand, Ravenstein and coworkers found high correlations between choice RT and time required to drive a slalom on a closed course (coefficients ranging from .66 to .84), and time required for switching gears. Hence, a relation has been demonstrated between RT and efficiency in handling a car, expressed in speed of performance. It remains to be seen, however, what the meaning of this relation is for the broader concept of fitness to drive.

Tests of visual perception have been recommended as relevant to the judgment of driving fitness. According to Gurgold and Hulden, the Frostig Test of Visual Perception can detect a deficit in the ability to distinguish important foreground information, such as road signs or traffic lights, from insignificant background. They likewise attribute predictive value to the Space Visualization Test (included in the Southern California Sensory Integration Tests by A. Jean Ayres) and the Frostig Developmental Test of Visual Perception. However, which specific driving abilities are measured by the latter tests is not completely clear. The authors refer to faulty interpretation of angles, curves, cross roads and merging lanes, and inadequate ocular pursuit.

Quigley reported experiences with CVA patients in a driver training course. He used parts of the Bender Gestalt Test to assess visual neglect, spatial disorganization, visual memory, and learning, all relevant to driving, as he added with an apparent belief in face validity. He also made use of the Trailmaking Test A and B, that requires visuospatial search while using systems of letters and numbers. In the Sivak study cited earlier, performance on two visual tests was clearly related to actual driving. Picture Completion from the Wechsler Adult Intelligence Scale correlated 0.72 with the Composite Driving Index, while Picture Arrangement from the same WAIS correlated 0.46 with the Index. A variety of other visual tests like the rod-and-frame test (setting a rod in a tilted frame to the vertical position) and the Porteus Maze (tracking a path through a printed maze) seemed to have little value in predicting driving skills. The usefulness of Picture Completion and Picture Arrangement was not confirmed by Ravenstein, who found no relation between these tests and the performance of head-injured patients in closed-course driving.

At first glance, a simulator with a realistic, dynamic presentation of traffic scenes would seem to be the best test of fitness to drive. Reports on simulator use with brain-damaged subjects are very limited. Quigley et al. report on the use of a simulator for a partial assessment of driving skills in younger CVA patients before in-car evaluations started. Although the simulator was judged useful for the evaluation of some driving skills, such as visual perception, dexterity, and directionality skills, the report does not sound entirely positive, for example, when the author remarks that the cognitive tasks of following directions, sequencing, and learning new behaviors, may be "grossly assessed." Obviously, the authors are not entirely enthusiastic about a partial or gross assessment. Moreover, the simulator seemed useful for younger patients only.

Hopewell also reports mixed feelings about the use of the same type of simulator. When comparing head-injured drivers and normal control subjects on simulator performance, the error scores barely differentiated between groups. Although overall scores differed significantly, almost all of the variance was accounted for by the score on an acceleration subtest. Simulator scores correlated poorly with expert judgments of actual driving in traffic.

An improved simulator would make high demands on technology, including a direct relationship between the subject's behavior and projected traffic scenes. In simple simulators, standard videotapes or films are used that proceed regardless of the subject's reactions, and tapes or films have focused on training of healthy subjects, rather than on groups with special needs.

To summarize this section, the question of predicting fitness to drive raises various methodologic problems, including the validity of tests and rating scales, and the need for external criteria. Empiric evidence on useful predictors is very limited. It has been demonstrated in a small group of aphasic patients that degree of aphasia, age, and duration of illness, had no relation to fitness to drive as judged by a multidisciplinary rehabilitation team. In patients who had sustained very severe closed head injuries, severity of injury as expressed in duration of PTA seemed to have some predictive value for relicensing. Fronto-temporal symptoms like lack of self-criticism and disinhibition have been mentioned by some authors as incompatible with safe driving. Overall IQ has been proposed as a predictor, but its usefulness is questionable because of the many factors (both premorbid and postmorbid) that determine

Arch Phys Med Rehabil Vol 68, October 1987
the final IQ, and because of the fact that intelligence is not related to driving skills in the healthy population. Visual RT has a limited predictive value, according to some studies: RT in the laboratory predicts to some extent the speed of handling a car while maneuvering in a closed course. Various tests of visual perception, visual search, and visuospatial abilities have been proposed as predictors. For some tests, evidence of predictive value is conflicting. Others have been presented on the basis of their face validity only.

Finally, some experience has been reported with simulators in the selection and training of brain-damaged subjects in rehabilitation centers. The usefulness of these expensive and complicated instruments has not yet been demonstrated convincingly.

Training and/or Retraining

Many rehabilitation institutes have developed driver training courses for their disabled clients. These courses usually include both the theoretical and practical aspects of driving. Although most training programs are principally concerned with driving a car, in bicycling countries like the Netherlands and Denmark, bicycling is also trained at some centers. In addition, there are some reports about the training of brain-damaged pedestrians.27

Driver training courses at rehabilitation centers have very high success rates with patients with handicaps other than brain damage. Shure28 reports a relicensing rate of 90% in patients who were injured by spinal cord injury, congenital disability, and muscular dystrophy. Kent and associates14 report a success rate of 92% in a group of mainly spinal cord injured patients. For subjects with brain damage, percentages of relicensing are much lower. In the training program mentioned above, Shure28 found that 50% of patients with cognitive impairments due to CVA, cerebral palsy, and closed head injury, were relicensed. Quigley29 reports a relicensing rate of 52% in patients who had CVAs. Hopewell10 found that 53% of a group of severely head-injured patients were driving six months after discharge from a rehabilitation center where they had participated in a driving training program. These percentages seem to indicate that at least half the patients who sustain severe cerebral lesions can be retrained to an acceptable level of driving skills, but these data must be interpreted with caution, for two reasons. First, due to limitations in staff and time, only patients who appear to have a reasonable chance of success are admitted to the training programs. Success rates may be inflated by this selection mechanism. Second, there is no information available about comparable patient groups who did not participate in training or retraining courses.

Although not stated explicitly in the investigations, driver courses were obviously taken by patients of whom most were relicensed before sustaining cerebral lesions. In other words, these reports are in fact concerned with the retraining of driving skills. It seems worthwhile to distinguish clearly in future research, between training and retraining. At first sight, those trainees who have to relearn their former skills might have a lead when the more automatic acts of driving are preserved. On the other hand, in some cases these very automatizations may interfere with a learning program when the latter requires a drastic change in motor patterns. Postma and de Rijk22 noted that right hemiplegics are hindered in their retraining by automatic reactions with the left leg. For example, when a subject tries to decelerate in a training vehicle with automatic transmission, he may step abruptly on the accelerator pedal that has been placed on the left side. Unlearning automatic responses demands a flexibility that may be absent or reduced after severe cerebral lesions. The need to distinguish between training and retraining can be illustrated with data presented by Koops.13 In groups comparable in severity of injury and age, a late follow-up found that the proportion of licensed drivers was far greater in the group who drove before injury. In this group, 65% had drivers' licenses at follow-up while only 33% were licensed drivers in the group who had not been driving before injury.

The designs of training programs seem to have much in common. Classroom instruction, technical handling of the car, maneuvering, and actual driving in traffic figure in all courses. Still, the net effects of these training programs are difficult to compare from study to study, because the length and intensity of training is always adapted to the specific needs of a particular patient. In addition, the pattern of motor and cognitive impairments of trainees varies, as do the technical adaptations that are realized in the subject's own cars. The possibilities of technical adaptation seem almost unlimited. Störig32 describes technical equipment that enables even subjects without upper limbs to drive.

Most training courses emphasize driving skills on the operational level, like handling a car and maneuvering. In addition, during training in traffic, patients are also monitored on certain decisions and actions on the tactical level. For example, directions might be given on safely judging gaps in traffic when merging. It may be suggested that training programs for brain-damaged subjects should pay more attention to the strategic level of car driving. It might be useful to train subjects on selective and sensible uses of cars. On the tactical level, more emphasis could be placed on defensive and anticipatory driving.

All training programs have a practical orientation; they are not theoretical. This is fully understandable, considering the primary aim of rehabilitation and the client-centered approach of rehabilitation services. Moreover, this practical approach seems to work, as measured by relicensing rates. However, an interesting alternative has been described by Sivak and colleagues.29 In a previous study,20 some perceptual and cognitive impairments related to faulty driving in brain-damaged subjects were identified. The investigators then designed a perceptual training program for eight subjects with acquired brain damage. The program consisted of simple paper and pencil exercises during six to ten hours of individualized training, requiring the use of a wide range of perceptual skills and abilities (visual scanning, directed eye-movements, spatial perception and discrimination, figure/ground differentiation, visual imagery, attentional capacity, and general problem-solving approach). This training was preceded and followed by repeated evaluations of perceptual skills and in-traffic driving performance.

The perceptual evaluation was carried out with tests that were not used in the training sessions. Driving skills were evaluated on a 17-km course through light-to-moderate town traffic. Ac-
tions were scored in categories like safe gap acceptance in merging, speed, lane keeping, etc. The results indicated that perceptual skills improved after such training; the training was also associated with improved driving performance. The degree of driving performance improvement was directly related to the degree of improvement in perceptual skills. The authors concluded that their findings support training that deals with underlying component skills, not merely with the functional behaviors of interest.

Both the practical rehabilitation approach and training of underlying skills claim success. It remains to be seen whether one of these approaches will prevail or whether they can supplement each other to the benefit of the trainees.

CONCLUSION

Although the problem of judging fitness to drive is receiving increasing attention, few solid statements can be made, but some general conclusions are possible.

First, it is clear that brain-damaged subjects form a specific subgroup in the population of rehabilitation institutes, where driving fitness is concerned. Although success rates of retraining programs are strikingly high for the non-brain-damaged disabled, only half the population with cerebral lesions can be trained to an acceptable level of driving skill.

Second, brain-damaged subjects who resume driving cannot be described as a high-risk group. Although large-scale statistics are lacking, several studies indicate that subgroups of neurologically impaired people are not conspicuous for their number of traffic violations and accidents. In future research, it seems important to pay attention to variables of etiology, size of lesion, side of lesion, and interval since the beginning of the cerebral disease or the moment of injury. Two important distinctions might be focal vs. diffuse lesions, and stable vs. progressive lesions. Another informative variable could be driving experience before injury or disease. It would be of both theoretical and practical interest to find out whether overlearned skills are less vulnerable to brain damage than the skills of a less experienced driver.

Third, in the case of stable brain lesions, many patients seem able to compensate for their motor and cognitive deficit by adopting a driving style, by restricted use of their cars, and by the use of technical adaptations of the vehicle. The first two of these compensation mechanisms require awareness of one's deficits and impairments. Therefore, it is probable that compensation of perceptual deficits will be possible only in those brain-damaged drivers with preserved insight and self-criticism. This could mean that negative personality changes resulting from lesions in the frontal lobes are the most important causes of reduced driving skills and increased risk. A combination of serious instrumental shortcomings and lack of insight about these shortcomings will make a brain-damaged driver a danger on the road. Future research should therefore pay special attention to the topics of compensation and personality changes.

Acknowledgments: We would like to thank the staff of the Foundation for Research on Traffic Safety, the SWOV in Leidschenzijl, who carried out a computer search of the literature, and who supplied data on drivers' licenses for the general Dutch population.

ADDRESS REPRINT REQUESTS TO:
A H van Zomeren, MD
Department of Neurology
University Hospital
9713 EZ Groningen
The Netherlands

References
5. California Department of Motor Vehicles: A study of the physically handicapped driver. May 1973
22. Postma W, de Rijk A: Personal communication, Heliomare Rehabilitation Centre, Wijk aan Zee, the Netherlands, 1983
24. Kavecanin R, Voling IH, Gaillard AWK: De rijgesichtheid van een durenschenbeschadiging - een proble-
BRAIN DAMAGE AND DRIVING, van Zomeren

25. Richtlijnen Geneeskundige CBR. Centraal Bureau voor afgifte van Rijvaardigheidsbewijzen, Rijswijk, the Netherlands, 1971

☆